

ADVANCED GCE MATHEMATICS (MEI) Mechanics 3

4763

Candidates answer on the Answer Booklet

OCR Supplied Materials:

- 8 page Answer Booklet
- Graph paper
- MEI Examination Formulae and Tables (MF2)

Other Materials Required:

• Scientific or graphical calculator

Thursday 24 June 2010 Morning

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The acceleration due to gravity is denoted by $g \text{ m s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72.
- This document consists of 8 pages. Any blank pages are indicated.

(a) Two light elastic strings, each having natural length 2.15 m and stiffness 70 N m⁻¹, are attached to a particle P of mass 4.8 kg. The other ends of the strings are attached to fixed points A and B, which are 1.4 m apart at the same horizontal level. The particle P is placed 2.4 m vertically below the midpoint of AB, as shown in Fig. 1.

Fig. 1

(i)	Show that P is in equilibrium in this position.	[6]
(ii)	Find the energy stored in the string AP.	[2]

Starting in this equilibrium position, P is set in motion with initial velocity 3.5 m s^{-1} vertically upwards. You are given that P first comes to instantaneous rest at a point C where the strings are slack.

(iii) Find the vertical height of C above the initial position of r.	Find th	cal height of C above the initial position of P.
--	---------	--

(b) (i) Write down the dimensions of force and stiffness (of a spring). [2]

A particle of mass *m* is performing oscillations with amplitude *a* on the end of a spring with stiffness *k*. The maximum speed *v* of the particle is given by $v = cm^{\alpha}k^{\beta}a^{\gamma}$, where *c* is a dimensionless constant.

(ii) Use dimensional analysis to find α , β and γ . [4]

2 A hollow hemisphere has internal radius 2.5 m and is fixed with its rim horizontal and uppermost. The centre of the hemisphere is O. A small ball B of mass 0.4 kg moves in contact with the smooth inside surface of the hemisphere.

At first, B is moving at constant speed in a horizontal circle with radius 1.5 m, as shown in Fig. 2.1.

Fig. 2.1

- (i) Find the normal reaction of the hemisphere on B.
- (ii) Find the speed of B.

The ball B is now released from rest on the inside surface at a point on the same horizontal level as O. It then moves in part of a vertical circle with centre O and radius 2.5 m, as shown in Fig. 2.2.

Fig. 2.2

(iii) Show that, when B is at its lowest point, the normal reaction is three times the weight of B. [4]

For an instant when the normal reaction is twice the weight of B, find

(iv) the speed of B,	[5]

(v) the tangential component of the acceleration of B.

[3]

[3]

[3]

3 In this question, give your answers in an exact form.

The region R_1 (shown in Fig. 3) is bounded by the *x*-axis, the lines x = 1 and x = 5, and the curve $y = \frac{1}{x}$ for $1 \le x \le 5$.

- (i) A uniform solid of revolution is formed by rotating the region R_1 through 2π radians about the *x*-axis. Find the *x*-coordinate of the centre of mass of this solid. [5]
- (ii) Find the coordinates of the centre of mass of a uniform lamina occupying the region R_1 . [7]

The region R_2 is bounded by the y-axis, the lines y = 1 and y = 5, and the curve $y = \frac{1}{x}$ for $\frac{1}{5} \le x \le 1$. The region R_3 is the square with vertices (0, 0), (1, 0), (1, 1) and (0, 1).

- (iii) Write down the coordinates of the centre of mass of a uniform lamina occupying the region R_2 . [2]
- (iv) Find the coordinates of the centre of mass of a uniform lamina occupying the region consisting of R_1 , R_2 and R_3 (shown shaded in Fig. 3). [4]

4 A particle P is performing simple harmonic motion in a vertical line. At time t s, its displacement x m above a fixed point O is given by

$$x = A\sin\omega t + B\cos\omega t$$

where A, B and ω are constants.

(i) Show that the acceleration of P, in m s⁻², is $-\omega^2 x$. [3]

When t = 0, P is 16 m below O, moving with velocity 7.5 m s⁻¹ upwards, and has acceleration 1 m s⁻² upwards.

- (ii) Find the values of A, B and ω . [4]
- (iii) Find the maximum displacement, the maximum speed, and the maximum acceleration of P. [5]
- (iv) Find the speed and the direction of motion of P when t = 15. [2]
- (v) Find the distance travelled by P between t = 0 and t = 15. [4]

Mathematics (MEI)

Advanced GCE 4763

Mechanics 3

Mark Scheme for June 2010

Mark Scheme

1(a)(i)	$AP = \sqrt{2.4^2 + 0.7^2} = 2.5$	M1	
	Tension $T = 70 \times 0.35$ (= 24.5)	Al M1	
	Resultant vertical force on P is $2T\cos\theta - mg$	IVI I	2 4
	$-2 \times 24.5 \times \frac{2.4}{-4.8 \times 9.8}$	B1	For $T \times \frac{2.7}{2.5}$ (or $T \cos 16.3^\circ$ etc)
	$-2 \times 24.5 \times \frac{1}{2.5} \times \frac{1}{2.5}$	B1	For 4.8×9.8
	= 47.04 - 47.04 = 0	F 1	Compatibult also and
	Hence F is in equilibrium	6	Correctly shown
(ii)	$EE = \frac{1}{2} \times 70 \times 0.35^2$	M1	$(M0 \text{ for } \frac{1}{2} \times 70 \times 0.35)$
	Elastic energy is 4.2875 J	A1	Note If 70 is used as modulus instead
		2	of stiffness: (i) M1A0M1B1B1E0
			(ii) M1 A1 for 1.99
(iii)	Initial KE = $\frac{1}{2} \times 4.8 \times 3.5^2$	B1	
	By conservation of energy	M1	Equation involving EE, KE and PE
	$4.8 \times 9.8h = 2 \times 4.2875 + \frac{1}{2} \times 4.8 \times 3.5^2$	F1	
	47.04h = 8.575 + 29.4		$2 \times (ii) + 29.4$
	Height is 0.807 m (3 sf)	A1 4	(A0 for 0.8) ft is $\frac{2 \times (11) + 29.4}{47.04}$
(b)(i)	[Force] = MLT^{-2}	B1	Deduct 1 mark if units are used
	$[$ Stiffness $] = MT^{-2}$	B1	
		2	
(ii)	$\mathbf{L}\mathbf{T}^{-1} = \mathbf{M}^{\alpha} (\mathbf{M}\mathbf{T}^{-2})^{\beta} \mathbf{L}^{\gamma}$		
	$\gamma = 1$	B1	
	$\beta = \frac{1}{2}$	B1	
	$0 = \alpha + \beta$	M1	Considering powers of M
	$\alpha = -\frac{1}{2}$	A1	When [Stiffness] is wrong in (i), allow
		4	all marks ft provided the work is comparable and answers are non-zero

2 (i)	$R\cos\theta = mg$ [θ is angle between OB and vertical]	M1	Resolving vertically
	$R \times 0.8 = 0.4 \times 9.8$	A1	
	Normal reaction is 4.9 N	A1 3	
(ii)	$R\sin\theta = m\frac{v^2}{r}$	M1	For acceleration $\frac{v^2}{r}$ or $r\omega^2$
	$4.9 \times 0.6 = 0.4 \times \frac{v^2}{1.5}$	A1	or $4.9 \times 0.6 = 0.4 \times 1.5 \omega^2$
	$v^2 = 11.025$ Speed is 3.32 m s^{-1} (3 sf)	A1 3	ft is $1.5\sqrt{R}$
(iii)	By conservation of energy	M1	Equation involving KE and PE
	$\frac{1}{2}mu^2 = mg \times 2.5$	A1	
	$u^2 = 5g$ (<i>u</i> = 7)		
	$R - mg = m \times \frac{u^2}{2.5}$	M1	Vertical equation of motion (must have three terms)
	R - mg = 2mg $R = 3mg$	E1	Correctly shown
		4	or $R = 11.76$ and $3 \times 0.4 \times 9.8 = 11.76$
(iv) (v)	$\frac{1}{2}mv^2 = mg \times 2.5\cos\theta$	M1 A1	Mark (iv) and (v) as one part Equation involving KE, PE and an angle (θ is angle with vertical)
	$V = 3g \cos \theta$		$\left[\frac{1}{2}mv^2 = mgh \text{ can earn M1A1, but}\right]$
	2		only if $\cos \theta = h/2.5$ appears somewhere]
	$R - mg\cos\theta = m \times \frac{v}{2.5}$	M1	Equation of motion towards O (must have three terms, and the weight must be resolved)
	when $K = 2mg' (= 7.84)$, $2mg - mg \cos \theta = \frac{mv^2}{2\pi z}$		
	2.5		
	$2mg - \frac{mv^2}{5} = \frac{mv^2}{25}$	M1	Obtaining an equation for v
	$7.84 - 0.08v^2 = 0.16v^2$	M1	Obtaining an equation for θ These two marks are each dependent
	$v^2 = \frac{98}{3}$		on M1M1 above
	Speed is 5.72 m s^{-1} (3 sf)	A1	
	$\cos\theta = \frac{v^2}{5g} = \frac{2}{3}$ ($\theta = 48.2^\circ \text{ or } 0.841 \text{ rad}$)		
	Tangential acceleration is $g \sin \theta$	M1	[$g \sin \theta$ in isolation only earns M1 if
	Tangential acceleration is 7.30 m s^{-2} (3 sf)	A1 8	the angle θ is clearly indicated]

3 (i)	Volume is $\int_{1}^{5} \pi \left(\frac{1}{x}\right)^{2} dx$	M1	π may be omitted throughout Limits not required
	$=\pi\left[-\frac{1}{x}\right]_{1}^{5} (=\frac{4}{5}\pi)$	A1	For $-\frac{1}{x}$
	$\int \pi x y^2 dx = \int_1^5 \pi x \left(\frac{1}{x}\right)^2 dx$	M1	Limits not required
	$=\pi \left[\ln x \right]_{1}^{5} (=\pi \ln 5)$	A1	For $\ln x$
	$\overline{x} = \frac{\pi \ln 5}{\frac{4}{5}\pi} = \frac{5\ln 5}{4} (2.012)$	A1 5	SR If exact answers are not seen, deduct only the first A1 affected
(ii)	Area is $\int_{1}^{5} \frac{1}{x} dx$	M1	Limits not required
	$= \left[\ln x \right]_{1}^{5} (= \ln 5)$	A1	For ln <i>x</i>
	$\int x y dx = \int_{1}^{5} x \left(\frac{1}{x}\right) dx (= \begin{bmatrix} x \end{bmatrix}_{1}^{5} = 4)$	M1	Limits not required
	$\overline{x} = \frac{4}{\ln 5} \qquad (\ 2.485 \)$	A1	
	$\int \frac{1}{2} y^2 dx = \int_1^5 \frac{1}{2} \left(\frac{1}{x}\right)^2 dx$	M1	For $\int \left(\frac{1}{x}\right)^2 dx$
	$= \left[-\frac{1}{2x} \right]_{1}^{5} (=\frac{2}{5})$	A1	For $-\frac{1}{2x}$
	$\overline{y} = \frac{\frac{2}{5}}{\ln 5} = \frac{2}{5\ln 5}$ (0.2485)	A1 7	
(iii)	CM of R_2 is $\left(\frac{2}{5\ln 5}, \frac{4}{\ln 5}\right)$	B1B1 ft 2	<i>Do not penalise inexact answers in this part</i>
(iv)		B1	For CM of R_3 is $(\frac{1}{2}, \frac{1}{2})$
		M1	(one coordinate is sufficient) Using $\sum mx$ with three terms
	$\overline{x} = \frac{(\ln 5)\left(\frac{4}{\ln 5}\right) + (\ln 5)\left(\frac{2}{5\ln 5}\right) + (1)\left(\frac{1}{2}\right)}{\ln 5 + \ln 5 + 1}$	M1	Using $\frac{\sum mx}{\sum m}$ with at least two terms
	CM is $\left(\frac{4.9}{2\ln 5+1}, \frac{4.9}{2\ln 5+1}\right)$ (1.161, 1.161)	A1 cao 4	in each sum

Mark Scheme

4 (i)	$v = \frac{\mathrm{d}x}{\mathrm{d}t} = A\omega\cos\omega t - B\omega\sin\omega t$	B1	
	$a = \frac{d^2 x}{dt^2} = -A\omega^2 \sin \omega t - B\omega^2 \cos \omega t$	M1	Finding the second derivative
	$= -\omega^2 (A\sin\omega t + B\cos\omega t) = -\omega^2 x$	E1 3	Correctly shown
(ii)	<i>B</i> = -16	B1	
	$\omega = 0.25$	B1	
	<i>A</i> = 30	B2	When A is wrong, give B1 for a correct
		4	equation involving A [e.g. $A\omega = 7.5$ or
			$7.5^2 = \omega^2 (A^2 + B^2 - 16^2)$] or for
			A = -30
(iii)	Maximum displacement is $(\pm) \sqrt{A^2 + B^2}$	M1	Or $7.5^2 = \omega^2 (\operatorname{amp}^2 - 16^2)$
			Or finding <i>t</i> when $v = 0$ and
	Maximum displacement is 34 m	A1	substituting to find x
	Maximum speed is $(\pm) 34\omega$		
	Maximum acceleration is $(\pm) 34\omega^2$	M1	For either (any valid method)
		F 1	Only ft form our own
	Maximum speed is 8.5 ms	ГI Т(Only it from $\omega \times amp$
	Maximum acceleration is 2.125 m s^{-2}	FI 5	Only it from $\omega^2 \times amp$
(iv)	$y = 7.5\cos(0.25t + 4\sin(0.25t))$		
(1)	$v = 7.5\cos 0.23t + 4\sin 0.23t$ When $t = 15$, $v = 7.5\cos 3.75 + 4\sin 3.75$	M1	
	= -8.44		
	Speed is 8.44 m s ^{-1} (3 sf); downwards	A1	
		2	
(v)	Period $\frac{2\pi}{\omega} \approx 25 \mathrm{s}$,		
	so $t = 0$ to $t = 15$ is less than one period		
	When $t = 15$, $x = 30 \sin 3.75 - 16 \cos 3.75$ = -4.02	M1	
		M1	Take account of change of direction
	Distance travelled is $16+34+34+4.02$	M1	Fully correct strategy for distance
	Distance travelled is 88.0 m (3 sf)	A1 cao	
		4	